ato

Technologies

o

Atop Technologies, Inc

P

SDK Porting Guide

User Manual

V0.5
26 March 2021

SE59XX Industrial Device Server
Series

User Manual

V0.5

This PDF Document contains internal hyperlinks for ease of navigation.
For example, click on any item listed in the Table of Contents to go to that page|.

Published by:

Atop Technologies, Inc.

2F, No. 146, Sec. 1, Tung-Hsing Rd,
30261 Chupei City,

Hsinchu County

Taiwan,R.0.C.

Tel: +886-3-550-8137
Fax: +886-3-550-8131
sales@atop.com.tw
www.atoponline.com
www.atop.com.tw

http://www.atoponline.com/
http://www.atop.com.tw/

SE59XX Industrial Device Server

Series User Manual V05

Important Announcement

The information contained in this document is the property of Atop technologies, Inc., and is
supplied for the sole purpose of operation and maintenance of Atop Technologies, Inc., products.

No part of this publication is to be used for any other purposes, and it is not to be reproduced,
copied, disclosed, transmitted, stored in a retrieval system, or translated into any human or
computer language, in any form, by any means, in whole or in part, without the prior explicit written
consent of Atop Technologies, Inc.

Offenders will be held liable for damages and prosecution. All rights, including rights created by
patent grant or registration of a utility model or design, are reserved.

Disclaimer

We have checked the contents of this manual for agreement with the hardware and the software
described. Since deviations cannot be precluded entirely, we cannot guarantee full agreement.
However, the data in this manual is reviewed regularly and any necessary corrections will be
included in subsequent editions.

Suggestions for improvement are welcome. All other product's names referenced herein are
registered trademarks of their respective companies.

Documentation Control

Author: | Stanley Chung
Revision: | 0.5
Revision History:
Creation Date: | April 2019
Last Revision Date: | 26 March 2021
Product Reference: | SDK Porting Guide
Document Status: | Update

SE59XX Industrial Device Server

Series User Manual Vo5
Table of Contents

1 Preface 8
1.1 Purpose of the Manual 8
1.2 Who Should Use This User Manual 8
13 Getting the Source Code 8

2 Introduction 9
3 Software Block Diagram 10
4 Source Architecture 12
5 Build Enviomment Setup 14
5.1 Ubuntu 16.04 (i386) 15
5.2 Ubuntu 18.04 (x64) 16
5.3 Source Code Extraction 17
Source Code Compilation 18
Upgrade System/Firmware Image to Hardware Platform 20

71 Upgrade System Image or Bootloader from Bootloader (with TFTP protocol) 20
7.2 Upgrade System Image or Bootloader through Webpage 24
73 Manually Upgrade System Image or Bootloader from Debug Console 26

8 Platform APIs 28
8.1 Buzzer 28
8.2 Run LED 29
8.3 Alarm LED (Support Platform: 5904D, 5908A, 5916A) 30
84 DI, DO 30
8.5 Hardware Watchdog (Tl plarform only) 31
8.6 COM Management 33
8.7 Relay (Support Platform: 5901B, 5904D, 5908/16, 5908A/16A) 35
8.8 Log 35
8.9 Alert Message Management 36
8.10 Firmware Upgrade 38
8.11 System Reboot 40
8.12 System Management 41
8.13 Cellular Control (Cellular 3G/4G platform only) 43

9 INI Configs Read/Write (Settings Management) 47
9.1 Read Configurations from Shared Memory 48
9.2 Set Configuration to Shared Memory 51
9.3 Update Configurations to INI Files 53
9.4 Add New Configurations 55
10 Software 61
10.1 Application 61
10.2 Library 61

11 Web 62

SE59XX Industrial Device Server

Series User Manual V05
11.1 Web Account/Password 62
11.2 Change Web Logo 62
11.3 Add a New Webpage in Selection Menu 62
12 System 64
12.1 System Start-up Script Files 64
12.2 Account and Password of Debug Console 64
123 Change System Version Information 65
124 Platform Default Configurations 65
12.5 Kemel Configurations 66
12.6 Flash Partition Layout 66
12.7 Change COM Number 66
13 SMS Management (3G/4G Cellular Only) 68
13.1 SMS Settings 68
13.2 SMS Remote Control 69
13.3 SMS Alert Messages 69
13.4 Testing of SMS Remote Control 71
14 Firewall Support (Gateway Platform Only) 72
141 NAT 72
14.2 Firewall Scripts: Deny/ Allow/Forward 73
15 Examples 74
16 Warranty 75
Table of Figures
Figure 3.1 Software Block Diagram 10
Figure 4.1 Source Architecture of ATOP SDK 12
Figure 6.1 Selection of Build Target 18
Figure 6.2 Generating system images 19
Figure 7.1 Serial Port Setup for Debug Console 21
Figure 7.2 Copying generated firmware to tftp server folder 22
Figure 7.3 Resetting target device 22
Figure 7.4 Entering TFTP Download Mode 23
Figure 7.5 Input TFTP Server Address 23
Figure 7.6 Input File Name of “Image.did” 23
Figure 7.7 Resetting Target Device 24
Figure 7.8 Using Firmware Upgrade Web Page for ATOP SDK 24
Figure 7.9 Select new firmware from local host folder 25
Figure 7.10 Progress of uploading new image to device 25
Figure 7.11 Starting of firmware upgrade process 25
Figure 7.12 Finishing firmware upgrade and reboot 26
Figure 7.13 Copying generated firmware to host PC'’s tftp server folder 26
Figure 7.14 Login to debug console window 27
Figure 7.15 Activating firmware upgrade process 27
Figure 7.16 Checking auto-system restart 27
Figure 9.1 Type Definition of Feature IDs 55

SE59XX Industrial Device Server

Series User Manual
Figure 9.2 Defining of Feature Section Name 56
Figure 9.3 Defining stucture to handle SDK settings 56
Figure 9.4 Defining function names for feature settings 56
Figure 9.5 Adding sysconfig ID in conf_handler.c by locating the g_SYSConfHandler{] 57
Figure 9.6 Adding sysconfig ID 57
Figure 9.7 Defining Key Mapping Table 57
Figure 9.8 Implementing init function 57
Figure 9.9 Implementing Read Function 58
Figure 9.10 Implementing Write Function 58
Figure 9.11 Implementing Key Get Function 59
Figure 9.12 Implementing Key Set Function 59
Figure 9.13 Editing Default Configurations 59
Figure 9.14 Running Command in Open Debug Console 60
Figure 9.15 Running Commands to Check Key Values 60
Figure 9.16 Running Another Set of Commandsin Open Debug Console 60
Figure 10.1 Software Folders in SDK 61
Figure 11.1 Adding New Webpage in Selection Menu 63
Figure 12.1 System Target Configurations 64
Figure 12.2 System Start-up Script File 64
Figure 12.3 Changing of System Version Information 65
Figure 12.4 Platform Default Configurations 65
Figure 12.5 Kemel Configurations 66
Figure 12.6 Changing of COM Port Number 67
Figure 13.1 SMS Settings 68
Figure 13.2 SMC Configuration 70
Figure 13.3 SMS Alert Message 70
Figure 13.4 SMS Remote Control Configuration 71
Figure 13.5 SMS Self Test 71
Figure 14.1 Firewall NAT 72
List of Tables
Table 3.1 Description of Component in ATOP Softare Block Diagram 11
Table 4.1 Source Architecture’s Folders and Their Descriptions 13
Table 8.1 API for buzzer 28
Table 8.2 API for Run LED 29
Table 8.3 API for Alarm LED 30
Table 8.4 API for DI (Digital Input) 30
Table 8.5 API for DO (Digital Output) 31
Table 8.6 API for Enabling Hardware Watchdog (TI platform only) 31
Table 8.7 API for Disabling Hardware Watchdog (Tl platform only) 32
Table 8.8 API for Clearing Hardware Watchdog (TI platform only) 32
Table 8.9 APT for Setting Timeout Interval for Hardware Watchdog (Tl platform only) 32
Table 8.10 API for COM Port (UART) Management 33
Table 8.11 API for COM Port Initialization 33
Table 8.12 API for Setting COM Port Configuration 34
Table 8.13 API for Setting Relay State 35
Table 8.14 API for Sending Message to System Log File 35
Table 8.15 API for Alert Message Management 36
Table 8.16 API for SMS Message Management 37
Table 8.17 API for Firmware Upgrade to Flash 38
Table 8.18 API for Allocating Share Memory Buffer for Firmware Image 39
Table 8.19 API for Getting Shared Memory Buffer 39
Table 8.20 API for Unlinking Shared Memory Buffer of Firmware Image 39

SE59XX Industrial Device Server

Series User Manual

Vo4

Table 8.21 API for Rebooting System with SIGTERM

Table 8.22 API for Rebooting System without SIGTERM

Table 8.23 API for Getting System Information (Version of Firmware)

Table 8.24 API for Getting Firmware Version (Only Kernel and AP)

Table 8.25 API for Executing System Command

Table 8.26 API for Establishing Cellular Connection

Table 8.27 API for Terminating Cellular Connection
Table 8.28 API for Getting Status Information of Cellular Connection

Table 8.29 API for Getting GPS Information (for GPS supported Model only)

Table 8.30 API for Checking Supporting of 4G on Hardware Platform
Table 8.31 API for Detecting 4G Module on Hardware Platform

Table 8.32 API for Getting the 4G Interface Name

Table 9.1 Feature IDs Supported in SDK Package
Table 9.2 API: Read Configurations from Shared Memory

Table 9.3 API: Get Specified Key of System Configuration based on Feature ID from Shared Memory

Table 9.4 API: Read Value of Specified Key based on Feature ID and Section Index from Shared Memory
Table 9.5 API: Set Value of Specified Key Based on Feature ID

Table 9.6 API: Write Configurations based on Feature ID

Table 9.7 API: Update Configurations Based on Feature ID to Shared Memory and INI file
Table 9.8 API: Update Key Value based on Feature ID to Shared Memory and INI File

Table 10.1 Descriptions of Application Folders

Table 10.2 Descriptios of Library Folder

Table 13.1 Description of SMS Settings

Table 14.1 Description of Fields in NAT Setting

40
40
41
42
42
43
43
44
44
45
45
46
47
48
49
50
51
52
53
54
61
61
68
72

SE59XX Industrial Device Server

Series User Manual Preface

1 Preface

1.1 Purpose of the Manual

This manual supports the user with effective steps for porting your application or script to ATOP
SDK. As such, it contains some advanced network management knowledge, instructions,
examples, guidelines and general theories designed to help users manage this device and its
corresponding software. A background in general theory is necessary when reading it. Please
refer to the Glossary for technical terms and abbreviations (if any).

1.2 Who Should Use This User Manual

This manual is to be used by qualified network personnel or support technicians who are familiar
with embedded Linux or C-programming skill. It might be useful for system programmers or
network planners as well. This manual also provides helpful and handy information for first time
users. For any related problems, please contact your local distributor. If they are unable to assist
you, please redirect your inquiries to www.atop.com.tw or https://atoponline.com/.

1.3 Getting the Source Code

The ATOP SDK source package could be downloaded from ATOP FTP site. Please contact your
sales representative or local distributor to get your account information. If they are unable to
assist you, please redirect your inquiries to www.atop.com.tw or https://atoponline.com/.

http://www.atop.com.tw/
https://atoponline.com/
http://www.atop.com.tw/
https://atoponline.com/

SE59XX Industrial Device Server

Series User Manual Introduction

2 Introduction

ATOP has over 20 years of experience in designing and manufacturing high-tech equipment.
SE59XX platform is one of the major products developed by ATOP. It has been developed to meet
the growing need of robust platform for developing embedded applications to meet business
needs. To facilitate faster custom application development for ATOP's clients, ATOP provides a
standard SE59XX software development kit (SDK). SE59XX is equipped with various commonly
used hardware capabilities. This document describes in detail the high-evel software architecture
of SE59XX platform, SDK to build application, and software interfaces.

ATOP SDK (software development kit) is a software package which helps you to implement
applications on ATOP platforms easily. This document provides you with a quick and easy guide
to help you implement platform functions with ATOP SDK.

SE59XX Industrial Device Server

Series User Manual Software Block Diagram

3 Software Block Diagram

The software architecture of SES9XX SDK is designed to be a generic platform with a wide range
of most commonly used features required to develop embedded applications. Figure 3.1
illustrates the software block diagram of SE590X SDK, which is categorized into 3 layers: Boot
Loader, Kernel, and Libraries & Applications.

Applications/Scripts] [Diagnostic Tools][WEB]

Ve

Libraries

Kernel: Linux 3.XX

Boot Loader: u-boot

Figure 3.1 Software Block Diagram

The software layers in Figure 3.1 are placed on top of SE59XX hardware platform which is not
shown in the figure. The boot loader (bootstrap loader) layer is the first software that is run or
loaded on the hardware of SE59XX. The boot loader provides a way to load the operating system
(OS) and applications into the memory of the hardware. SE59XX employs u-boot or universal boot
loader which is an open-source boot loader for embedded device. Currently, SE59XX utilizes Linux
operating sytem in which there is a Linux Kemel running at the second layer as depicted in the
figure. Note that as of this writing the SE59XX is based on the Linux kernel version 3.XX as its
embedded operating system. Table 3.1 summarizes each block in the software block diagram of
Figure 3.1.

In the upper layer (layer three) of the software, ATOP SDK provides proprietary libraries for ATOP's
users to access SE59XX system and peripheral components. Additionally, diagnostic tools are
also available in the SDK to help test and verify peripheral components of SE59XX. Note that ATOP
SDK package employs an open-source small memory footprint web-server called lighttpd. This
web-server enables the users to easily manage the system setting via web browser-based user
interface (Web-Ul). The users can develop their own or customized applications or scripts to run
on top of these ATOP SDK architecture. There are also 3-+d party libraries or tools that are
compatible with Linux kerel used in the ATOP SDK.

10

SE59XX Industrial Device Server

Series User Manual Software Block Diagram
Table 3.1 Description of Component in ATOP Softare Block Diagram
Folder Description
Bootloader ATOP SDK supports u-boot as the bootloader.
Kernel The OS used by ATOP SDK is the Linux.
Libraries The libraries provide some ATOP proprietary APls for users to

access system or peripheral components easily.

ATOP SDK provides some basic applications and scripts to bring

Applications/Scripts up network and some basic network services.

The ‘Diagnostic tools” are available for users to test and verify

Diagnostic tools .
peripheral components.

ATOP SDK package uses the lighttpd as the WEB server. The
WEB simple WEB server helps users to manage system settings via
WEB Ul easily.

3 Party Tools/Library |3"-Party tools and libraries used in ATOP SDK

11

SE59XX Industrial Device Server

Series User Manual Source Architecture

4 Source Architecture

Figure 4.1 illustrates the source architecture of ATOP SDK. The figure outlines the directories or
folders along with their contents. Brief description of each folder is summarized in Table 4.1.

—{ Makefile

oem_driver

Makefile

il

linux-<vers>.tgz

—{ kernel =

1

H

plat_driver

—{ Makefile —{ Makefile
—{ application ——{ system
—{ utils
—{ software - —{ Makefile
—{ common
—{ library ——{ conf
—{ include —{ eeprom

mobile

platform.mk

function.conf

[t

ATOP SDK
1

—{ config —| <Target> —

1

defconf.h

plat_defconf

lighttpd —

il

web_pages
Makefile

busybox-<ver>.tgz
3rdparty

iniparser-<ver>.tgz
build

Makefile

modules.mk

platform.mk

common.mk

UHHREE

model.mk

Figure 4.1 Source Architecture of ATOP SDK

12

SE59XX Industrial Device Server

Series User Manual Source Architecture
Table 4.1 Source Architecture’s Folders and Their Descriptions
Folders Descriptions
3rdparty All 39-Party tools and libraries are collected in this folder.
Bootloader |This folder contains the boot source and related object codes.
. After source codes are compiled successfully, firmware images are generated
Build < e
in this folder.
Config This folder collects the platform/target configurations.
. This folder collects default scripts and content files of platform/target file
File System system
Kernel This folder collects the Linux kernel source and related ATOP proprietary object
codes.
Software This folder collects ATOP proprietary applications, libraries, and diagnostic
tools.
Webs This folder collects the WEB CGl files, HTML webpages and Java Script files.

To develop user’s applications or scripts, the users will require a host Personal Computer (PC) to
install the above source code. For example, the host PC may be based on an x86 processor
architecture. Then, the users can perform a cross-compiling of firmware for SES9XX on the host
PC and then upgrade the firmware of SE59XX to install your applications or scripts. Note that the
SE59XX is based on an embedded microcontroller architecture such as ARM cortex.

13

SE59XX Industrial Device Server

Series User Manual Build Enviornment Setup

5 Build Enviornment Setup

To build a firmware for your custom applications or scripts, you will need a host PC with suitable
operating system (0S) and build environment for ATOP SDK. Currently, ATOP SDK for SE59XX
supports two hardware architectures from Texas Instrument (TI) and Nuvoton platforms. Both
are based on ARM microcontroller architecture. Below is the list of supported operating systems
for host PC that can install ATOP SDK:

1. Ubuntu-16.04 (i386)
2. Ubuntu-18.04 (x64)
Once you obtained the SDK source package from ATOP. You will also need cross compiler
toolchain because it contains a set of programming tools used to develop your applications and
scripts for corresponding hardware platform. You can install it into the recommended folders:
e For Tl platform, install the toolchain to “/opt/ti-am335x-inux-devkit-08.00.00.00"
¢ For Nuvoton platform, install the toolchain to “/usr/local/arm_linux_4.8"
The following sections will describe the required steps with command lines to setup build
environment for Tl platform toolchain and Nuvoton platform toolchain on Ubuntu-16.04 (i386)

and Ubuntu-18.04 (x64), respectively. Note that you will require the root priviledge of your
operating system on host PC to perform those commands.

14

SE59XX Industrial Device Server

Series User Manual Build Enviornment Setup

5.1 Ubuntu 16.04 (i386)

For Ubuntu 16.04 (i386), please follow the steps below to setup the build environment. Note that
the command line behind the “$’ should be entered in the shell prompt of your operating system.

1. Copy and decompress the toolchain to host PC (ti-am335x-inux-devkit-
08.00.00.00.tar.bz2 or arm_linux-4.8_nuvoton.tgz)

For Tl Platform:
$ sudo cp ti-am335x-inux-devkit-08.00.00.00.tar.bz2 /opt/
$ cd /opt/; sudo tar jxf ti-am335x-inux-devkit-08.00.00.00.tar.bz2

For Nuvoton Platform:
$ sudo cp arm_linux_4.8_nuvoton.tgz /usr/local/
$ cd /usr/local/; sudo tar zxf arm_linux_4.8_nuvoton.tgz

2. Edit the bashrc file
S sudo vi ~/.bashrc

Add the line mentioned below at the end of the file (.bashrc) to set environment while
system start-up. Note that you can use any editor such as vi, vim, or nano.

For Tl Platform:
export PATH=/opt/ti-am335xinux-devkit-08.00.00.00/bin:SPATH

For Nuvoton Platform
export PATH=/usr/local/arm_linux_4.8:SPATH

3. Install essential components

$ sudo apt-get install git fakeroot build-essential ncurses-dev xz-utils kernel-package
openssl libssl-dev autotools-dev autoconf libtool

4. Install image generating tools
$ sudo apt-get install genext2fs u-boot-tools
5. Build libraries for iptables (required only in case of iptables full support)

$ sudo apt-get install flex bison libnfnetlink-dev libnetfilter-conntrack-dev libnetfilterHdog-
dev

6. Build libraries for glib (required only in case of glib support).

$ sudo apt-get install pkg-config libmount-dev libpcre3-dev

15

SE59XX Industrial Device Server

Series User Manual Build Enviornment Setup

5.2 Ubuntu 18.04 (x64)

For Ubuntu 18.04 (x64), please follow the steps below to setup the build environment. Note that
the command line behind the “$’ should be entered in the shell prompt of your operating system.

1. Copy and decompress the toolchain to host PC (ti-am335x-inux-devkit-
08.00.00.00.tar.bz2 or arm_linux_4.8_nuvoton.tgz)

For Tl Platform:

$ sudo cp ti-am335xinux-devkit-08.00.00.00.tar.bz2 /opt
$ sudo tar jxf ti-am335xinux-devkit-08.00.00.00.tar.bz2 /opt

For Nuvoton Platform:

$ sudo cp arm_linux_4.8_nuvoton.tgz /usr/local
$ cd /usr/local/; sudo tar zxf arm_linux_4.8_nuvoton.tgz

2. Edit the file of “bashrc”

S sudo vi ~/.bashre
Add below line

For Tl Platform:
export PATH=/opt/ti-am335xinux-devkit-08.00.00.00/bin:SPATH

For Nuvoton Platform:
export PATH=/usr/local/arm_linux_4.8/bin:SPATH

3. Install essential components

$ sudo apt-get install git fakeroot build-essential ncurses-dev xz-utils kernel-package
openssl libssl-dev autotools-dev autoconf libtool flex bison

4. Instal image generating tools
$ sudo apt-get install genext2fs u-boot-tools
5. For Linux 18.04, enable i386 architecture first

$ sudo dpkg —add-architecture i386
$ sudo apt-get update

6. Install 32-bit libraries

16

SE59XX Industrial Device Server

Series User Manual Build Enviornment Setup

$ sudo apt-get install lib32ncurses5 lib32z1

$ sudo apt-get install libstdc++6:i386 libncurses5:i386 libz1:i386 libc6:i386 libc6-dev-i386
g++-multilib

7. Switch shell from dash to bash

$ sudo dpkg-reconfigure dash
#Select no when prompted

8. Build libraries for glib (Required only when glib support)

$ sudo apt-get install pkg-config libmount-dev libpcre3-dev

53 Source Code Extraction

This section lists the commands required to extract the source code of ATOP SDK to your host
PC. Starting by changing the current directory (using cd command) to the folder where ATOP SDK
package was downloaded. Then, there are two steps to extract the SDK source.

1. Decompress the zipped source package.
$ unzip ATSDK_<Model>_<Version>_<Date>.zip

Enter the password that described with prefix Pwd: in
release_ATSDK_<MODEL>_<VERSION>_<DATE>.txt

2. Extract the source code
$ tar —zxf ATSDK_<Model>_<Version>.tgz

17

SE59XX Industrial Device Server

Series User Manual Source Code Compilation

6 Source Code Compilation

Most of the compiling methods are supported in <sdk>/modules.mk. Here are the basic
commands used to compile the sources and generate the image files:

1. Build the whole system images - $ make release_all

2. Build the system images (build with kernel) - $ make release_img

3. You may also try to use this command to generate the system image without building the
kernel source (Make sure that kernel was built successfully before using this command) -
$ make image

Compile the folders of software and webs, then generate the image - $ make fwimg
Compile the software folder - $ make swbuild

Compile the web folder - $ make websvr

Compile the 3™ party folder - $ make opensrc

Noas

Here is an example how to generate the system images:

-—h

. Switch to ATOP SDK repository - $ cd <your working spaces>
2. Type this command to compile sources, and generate the bootloader and system images
$ make release_all
3. For compiling the sources for the first time, system may ask for the “Select Build Target”
and “Gen default target”. (If not, you can ignode this step)
o Select Build Target: <Your target platform to compile> (Ex: ATSDKC_A2201 is SDK
for SE5901b platform)
e Gen default target: y (Please type ‘y”, thus there is no need to specify build target in
next build)

I aiPabesaoll - /i0rkspace sdk_01085 nake release_all
Select Build Target? (ATCS A1161 ATCS A2261 ATSDK A1101 ATSDK A1216 ATSDK A1364 DENWREM ATSDK BA6A1 ATSE A1216 ATSE A1364 ATSE BO0G1 sdkbup): ATSDK A2201

Gen default target(.config)? [y/n]y

Figure 6.1 Selection of Build Target

4. After the build is successful, the bootloader and system images would be generated in the
folder - “<SDK>/build”

$ <TARGET>.dId // for system
S uboot.did // for bootloader

18

SE59XX Industrial Device Server
Series

User Manual

Source Code Compilation

4096
4096
1032
16664
12902
33360
2265
1484
11745040
7426621
14006
33556
33189
36583
360272
360528
4317624

-f

checksum.c
composer®
composer32_ wv2.c
dtb.dld
generate_dld_file.sh*
getsid.sh*
Image.dld
initrd.uboot
merge.c
se5901b.dtb
se5984.dtbh
se5916a.dth
u-boot.bin
u-boot.dld
zImage>*

Figure 6.2 Generating system images

19

SE59XX Industrial Device Server
Series

Upgrade System/Firmware Image to

User Manual Hardware Platform

7 Upgrade System/Firmware Image to Hardware
Platform

When you successfully built the new system/firmware image from the source code in the previous
chapter, you can deploy your newly develop applications or scripts on the actual device such as
SE59XX. There are three methods to upgrade the system/firmware images to hardware
platforms. These methods are described in the following sections:

7.1 Upgrade System Image or Bootloader from Bootloader (with TFTP protocol)

The first method described in this section requires that you have access to the console port of
the device via a debug line and the device is also connected to a host PC that runs TFTP server
via an RJ45 cable and Ethernet port. You will need a terminal application such as tera term or

20

SE59XX Industrial Device Server
Series

Upgrade System/Firmware Image to

User Manual Hardware Platform

HyperTerminal to access the debug console of the device. Additionally, you will need to install the
TFTP on the host PC. Please follow the prerequisite steps as followings.

1. Using a debug line (serial cable) to connect a COM (USB) port of the host PC to the debug
console port (USB2) of the device (hardware platfrom SE59XX) and a RJ-45 line (Ethernet
cable) between the LAN port of the device (SE59XX) to the LAN port of the host PC.

2. Launch a terminal application such as tera term on the host PC and setup the COM port
parameters such as baud rate, data bits, parity bit, stop bits, and flow control to the values
shown in Figure 7.1.

Port: COME v |I\
Baud rate: m v
Data: 8 bit v
Parity: none hd
Stop: 1 bit Vi
Flow control: none v

Transmit delay

0 msecfchar 0 msecfline

Figure 7.1 Serial Port Setup for Debug Console

3. Run the TFTP server on the host PC using application program such as tftpd64.exe or
tftpd32.exe and setup the Server Interfaces to the IP address of LAN port of the host PC.

To upgrade the new firmware to your hardware platform, please follow these steps:
1. Copy generated firmware of ‘Image.did” (or <Target>.dld or u-boot.dId) to tftp server folder

(titpd32/64) on the host PC. Make sure that you run the TFTP server and set the Current
Directory to the folder that the firmware is placed as shown in Figure 7.2.

21

SE59XX Industrial Device Server

Series

User Manual

Upgrade System/Firmware Image to

Hardware Platform

F» Tftpd64 by Ph. Jounin - O X

Current Directory | SEXENETEENE== =] - Browse
Server interfaces |12?.D.D 1 Software LL] Show Dir

Thp Server | Tftp Client | DHCP server | Syslog server | Log viewer |

peer file start time | progress

<

About I Settings | Help

|

Figure 7.2 Copying generated firmware to tftp server folder

2. On the debug console terminal, reset the target device and press the “‘ESC” button (via the
console terminal such as tera term) to enter bootloader shell command menu as shown in

Figure 7.3.

U-Boot 2014.07 (Sep 27 2018 - 08:27:59)

ready
256 MiB
sh: 64 MiB
OMAP SD/MMC: @, OMAP SD/MMC: 1
*** Warning - bad CRC, using default environment

Net: CpSw
ESC to execute ATOP menu:

Reboot

LAN Settings

DNS Settings
Security Settings
Device Name

TFTP Download
Hardware Diagnostic

Figure 7.3 Resetting target device

3. Onthe debug console terminal, type “5”to enter “TFTP Download” mode as shown in Figure

7.4.

22

SE59XX Industrial Device Server

Series

Upgrade System/Firmware Image to

User Manual Hardware Platform

Reboot

LAN Settings

DNS Settings
Security Settings
Device Name

TFTP Download

Hardware Diagnostic

Set New TFTP Server IP
Download Image

Figure 7.4 Entering TFTP Download Mode

4. On the debug console terminal, type “1” to input correct TFTP server address (the same
address as the LAN port of the host PC running TFTP server) as shown in Figure 7.5.

[1] Set New TFTP Server IP

[2] Download Image

. |
urrent(192.168.5.91):192.168.5.91.

Figure 7.5 Input TFTP Server Address

5. On the debug console terminal, type “2” and input the file name of “Image.did” (or
<Target>.dld) which is already placed on the host PC. Then type “Enter” to activate the
firmware upgrade progress as shown in Figure 7.6.

[1] Set New TFTP Server IP
[2] Download Image

: 2

: Image.dld

[1nk up on port 1, speed 100, full duplex
Using cpsw device
FTP from server 192.168.5.91; our IP address is 192.168.5.98
Filename 'Image.dld’.
Load address: 0x82000000
Loading: i
HHHHHHHHHHH T S R i

Figure 7.6 Input File Name of ‘ilmage.did”

23

SE59XX Industrial Device Server
Series

Upgrade System/Firmware Image to

User Manual Hardware Platform

6. After the firmware was upgraded successfully, reset the target device (SE59XX), and make
sure that it can start-up properly. Note that on the debug console device, manually press
“0” to Exit then press “0” to Reboot or reset the device as shown in Figure 7.7.

Set New TFTP Server IP
Download Image

Reboot

LAN Settings

DNS Settings
Security Settings
Device Name

TFTP Download
Hardware Diagnostic

resetting ...

Figure 7.7 Resetting Target Device

7.2 Upgrade System Image or Bootloader through Webpage

The second method to upgrade the system image or boot loader is through the web browser that
accesses the webpage of the device. Here are the steps that you need to follow:

1. Login to the device’s webpage using default username account/password: admin/default.
2. Select to System Setup menu and then select sub-menu Firmware Upgrade as shown in

Figure 7.8.
+ System Status Firmware Upgrade
Network Settings To upgrade the firmware, browse to the location of the new firmware binary file (.dld) and click
+ Serial Upload button. In some cases, the device reconfiguration is required.
+Log Settings Select new firmware Browse...
- System Setup Upload

Admin Settings
Firmware Upgrade
Restore Configuration

Reboot

Figure 7.8 Using Firmware Upgrade Web Page for ATOP SDK

24

SE59XX Industrial Device Server
Series

Upgrade System/Firmware Image to

User Manual Hardware Platform

3. On the web page, click “‘Browse..."” button to select firmware (Image.did) from your local
host as shown in Figure 7.9.

Firmware Upgrade

To upgrade the firmware, browse to the location of the new firmware binary file (.dld) and click
Upload button. In some cases, the device reconfiguration is required.

Select new firmware Image.dld Browse...

Upload

Figure 7.9 Select new firmware from local host folder

4. On the web page, click “Upload” button to start upload new image to the device (SE95XX)
and the progress of uploading the new image is shown in Figure 7.10.

Q

Figure 7.10 Progress of uploading new image to device

5. On the web page, click “OK” to start the firmware upgrade process as shown in Figure
7.11.

10.0.50.100 says

Finish uploading firmware. Press OK to continue to write it to the flash

Figure 7.11 Starting of frmware upgrade process

25

SE59XX Industrial Device Server

Upgrade System/Firmware Image to
Series User Manual

Hardware Platform

6. Click “OK" to finish the firmware upgrade process and reset device as shown in Figure
7.12.

10.0.50.100 says

Finish writing the new firmware to flash, the system will reboot

Figure 7.12 Finishing firmware upgrade and reboot

7. Check if frmware has upgraded successfully after the device is rebooted by login to the
device again via web browser.

7.3 Manually Upgrade System Image or Bootloader from Debug Console

The third method for upgrading the firmware is also possible using only command line via the
debug console. Once again, you will need access to the debug port of the hardware platform and
also require to have a TFTP server installed and run on a host PC. Here are the steps to manually
upgrade system image or bootloader from the debug console:

1. Start the TFTP server on your host PC and copy generated firmware to tftp server folder
using tftpd32/64 application as shown in Figure 7.13.

& Tftpd64 by Ph. Jounin

Current Directory | SRYETEENEER - Browse
Server interfaces ‘127‘070‘1 Software Lj Show Dir

Tiip Server | Tp Client | DHCP server | Syslog server | Log viewer |

O X

peer file start time | progress

< >

About I Settings | Help ‘

Figure 7.13 Copying generated firmware to host PC'’s tftp server folder

2. Login to debug console window using terminal application such as tera term as shown in
Figure 7.14. Enter the default account = ‘root’ and no password or null as password. Note

26

SE59XX Industrial Device Server
Series

Upgrade System/Firmware Image to

User Manual Hardware Platform

that the serial configuration should set the baudrate = 115200 bps and other parameters
as shown in Figure 7.1.

Welcome to HOST system
HOST login: root
#

Figure 7.14 Login to debug console window
3. Execute the following command on the prompt to activate the FW upgrade process as

show in Figure 7.15.
frmwr-upgrd tftp <ftp svr. Addr> <fw image>

Note: fw image can be system image (xxx.dld), bootloader image (u-boot.dld), or Linux device
tree image (dtb.did)

frmwr-upgrd tftp 192.168.5.91 dtb.dldl

Figure 7.15 Activating firmware upgrade process

4. Check if system resets automatically after the firmware was upgraded as indicated in
Figure 7.16.

frmwr-upgrd tftp 192.168.5.91 dtb.dld
T1lle s1ze = 338/2

Image file: /tmp/dtb.dld KB
killall: downloadd: no process killed

Waiting for upgrade finish!(33872)
Received image:DSE59XXSDK
<ProgramImage2Flash> write image size 33792 to flash...

Write flash, /dev/mtd2, write size=33792
Upgrade success! (System will restart automatically after 5 secs.)

Figure 7.16 Checking auto-system restart

5. Check if system starts up properly by logging in the system via debug console or through
web browser.

27

SE59XX Industrial Device Server

Series User Manual Platform APls

8 Platform APIs

This chapter introduces APIs that are available in the ATOP SDK package. With these APIs, users
can easily access and control peripheral components on the hardware platform such as SE59XX.
Note that the supported APIs may vary on different hardware platforms.

8.1 Buzzer
Table 8.1 API for buzzer

APl Name void BuzzerOnOff(int onoff)
Descriptions Turn of/ off the platform’s buzzer
Header buzzer.h

onoff:
Input 1: buzzer on

0: buzzer off

Output N/A
Return N/A

#include ‘buzzer.h”
Example // Buzzer on

BuzzerOnOff(1);

28

SE59XX Industrial Device Server

Series

User Manual

Platform APIs

8.2 Run LED

Table 8.2 API for Run LED

APl Name

void SetRunLed(RUNLED_HANDLER *pHandler);

Descriptions

Handle the behaviors of “Run Led”

Header

runled.h

Input

pHandler: the pointer of RUNLED_HANDLER

1:solid on/off
2:blink
3:blink as heart beat

- action:
O:LED off
1:LED on

- delay_on:
interval of LED on

- delay_off:
interval of LED off

Output

NA

Return

NA

Example

#include “runled.h”

RUNLED_HANDER handler;

handler.type=2;//blink

handler.action=1;//on
handler.delay_on-1000; // on interval, 1000ms
handler.delay_off=500; // of interval; 500ms

SetRunLed(&handler);

29

SE59XX Industrial Device Server

Series

User Manual

Platform APIs

8.3 Alarm LED (Support Platform: 5904D, 5908A, 5916A)

Table 8.3 API for Alarm LED

APl Name void SetAlarmLed(unsigned char onoff)
Descriptions Turn of/ off the alarm led
Header alarmled.h
onoff:
Input 0: off
1:on
Output NA
Return NA
#include “alarmled.h”
Example // Tum on alarm LED
SetAlarmLed(1);
84 DI, DO
Table 8.4 API for DI (Digital Input)
APl Name int SysGetDI(int index)
Descriptions Get DI pin status
Header dich
Input index: Index of pin
Output NA
Return 0 for low level signal, 1 for high level signal
#include “di.h”
int ret_status = 0;
Example //Get DIO pin status
ret_status = SysGetDI(0);
printf(“DIO0 pin status:%d\n", ret_status);

30

SE59XX Industrial Device Server

Series User Manual Platform APIs
Table 8.5 API for DO (Digital Output)
APl Name int SysSetDO(int index, int value)
Descriptions Set DO state
Header do.h
index: Index of pin
Input value:
P 0: output low level signal
1: output high level signal
Output NA
Return -1 for failure, otherwise for success
#include “do.h”
// Set DOO on
Example SysSetDO(0, 1);
// Set DO1 off
SysSetDO(1, 0);

8.5 Hardware Watchdog (Tl plarform only)

Table 8.6 API for Enabling Hardware Watchdog (T1 platform only)

APl Name void hwd_enable(void)
Descriptions Enable HW watchdog
Header sys_hwd.h
Input NA
Output NA
Return NA

#include “sys_hwd.h”
Example // enable HW watchdog

hwd_enable();

31

SE59XX Industrial Device Server

Series User Manual Platform APIs
Table 8.7 API for Disabling Hardware Watchdog (T1 platform only)
APl Name void hwd_disable(void)
Descriptions Disable HW watchdog
Header sys_hwd.h
Input NA
Output NA
Return NA
#include “sys_hwd.h”
Example // enable HW watchdog
hwd_disable();
Table 8.8 API for Clearing Hardware Watchdog (TI platform only)
APl Name void hwd_clear(void)
Descriptions Clear HW watchdog timer count
Header sys_hwd.h
Input NA
Output NA
Return NA
#include “sys_hwd.h”
Example // clear HW watchdog
hwd_clear() ;

Table 8.9 APT for Setting Timeout Interval for Hardware Watchdog (TI platform only)

APl Name void hwd_timeout(unsigned int timeout)
Descriptions Set HW watchdog timer’s timeout interval
Header sys_hwd.h

Input interval of timeout (sec)

Output NA

Return NA

32

SE59XX Industrial Device Server

Series User Manual Platform APIs
#include “sys_hwd.h”
Example // Set HW watchdog timer timeout interval to 10 secs
hwd_timeout(10);
8.6 COM Management
Table 8.10 API for COM Port (UART) Management
APl Name int SysUARTNumber(void)
Descriptions Query supported number of COM ports
Header sys_uart.h
Input NA
Output NA
Return Number of supported COM ports
#include “sys_uart.h”
Example // Get COM port number
int num = SysUARTNumber();
printf(“COM port number:%d\n”, num);
Table 8.11 API for COM Port Initialization
APl Name void comport_init(void)
Descriptions Initialize COM ports depending on COM configurations
Header comport.h
Input NA
Output NA
Return NA
#include “‘comport.h”
Example // Depending on COM settings to Initialize physical port settings
comport_init();

33

SE59XX Industrial Device Server

Series User Manual Platform APIs
Table 8.12 API for Setting COM Port Configuration
APIName |int comport_set(unsigned char index, void *pConf)
sDescrlptlon Set COM port configurations
Header comport.h
Index:
Index of physical COM port
pConf:
pointer of COM port handler (COM_CONFIG)
Input R
unsigned int 3225335&2%@;
[} COM_CONFIG;
Output NA
Return NA
#include “‘com_conf.h”
#include “‘comport.h”
COM_CONFIG conf;
memset(&conf, 0, sizeof(COM_CONF));
conf.u8Mode = 0; // RS-232
conf.u8Parity = 0; // none
conf.u8Databit = 1; // 8 bit
Example

conf.u8Stopbit = 0; // 1 bit
conf.u8Flowctl = 0; // none
conf.u8Xon = Oxff; // Oxff
conf.u8Xoff = Oxff; // Oxff
conf.u8Mode =0; // RS-232
conf.u8Passthru = 0; // none
conf.u32Baudrate = 115200; // 115200

// Set COMO settings
comport_set(0, &conf);

34

SE59XX Industrial Device Server

Series User Manual Platform APls

8.7 Relay (Support Platform: 5901B, 5904D, 5908/16, 5908A/16A)

Table 8.13 API for Setting Relay State

APl Name void SetRelayOnOff (unsigned char onoff)
Descriptions Switch relay state: on or off
Header relay.h

onoff:
Input 0: off

1:on

Output NA
Return NA

#include ‘relay.h”

Example // Set Relay state to on
SetRelayOnOff(1);
8.8 Log
Table 8.14 API for Sending Message to System Log File
APl Name void SendSysLog (severity_e serv, char *prefix, char *msg)
Descriptions Send messages to system Log file
Header loginfo.h
serv:
EVT_INFO
EVT_WARN
EVT_ERR
prefix:
Input Prefix information
LOG_SYS: “Sys”
LOG_NET: ‘Net”
msg:
Message contents
Output NA
Return NA
#include “loginfo.h”
Example
// Set Relay state to on
SendSysLog(EVT_INFO, LOG_SYS, “This is a log test!");

35

SE59XX Industrial Device Server

Series User Manual Platform APls

8.9 Alert Message Management

Depending on hardware platforms, ATOP SDK supports a nhumber of alert APIs to help users
sending alert information while receiving specified events.

Table 8.15 API for Alert Message Management

void SendAlertMsg(unsigned int msg_event, unsigned char isSysLog,

i MSG_SYSLOG_HANDLER *pLog);
Descriptions Send messages to Log file
Header alert_msg.h
msg_event:
typedef enum {

MSGALERT_COLD_START =0,
MSGALERT_AUTH_FAIL,
MSGALERT_IP_CHANGE,
MSGALERT_PASSWORD_CHANGE,
MSGALERT_RESET_DEFAULT,
MSGALERT_RESTORE_CONFIG,
MSGALERT_LAN_LINK_DOWN,
MSGALERT_LAN_LINK_UP,
MSGALERT_DI1_CHANGE,
MSGALERT_DI2_CHANGE,
MSGALERT_DI1_ON,
MSGALERT_DI1_OFF,
MSGALERT_DI2_ON,
MSGALERT_DI2_OFF,

Input MSGALERT_IPSEC_CONNECTED,
MSGALERT_IPSEC_DISCONNECTED,
MSGALERT_OVPN_CONNECTED,
MSGALERT_OVPN_DISCONNECTED,
MSGALERT_PPTP_CONNECTED,
MSGALERT_PPTP_DISCONNECTED,
MSGALERT_UNKNOWN_COMMAND,
MSGALERT_CELLULAR_LINK_DOWN,
MSGALERT_CELLULAR_LINK_UP,
MSGALERT_MAX

} MsgAlertBit_e;

isSysLog:

Record the information to syslog file

No extra handle for the alert message

pLog:

typedef struct __msg_syslog_handler__{
unsigned char u8Severity;

36

SE59XX Industrial Device Server

Series

User Manual Platform APIs

char u8PrefixMsg[16];
char u8Message[MSGALERT_MAX_LENGTH];
} MSG_SYSLOG_HANDLER;

Output

NA

Return

NA

Example

#include “alert_msg.h”

SendAlertMsg (EVT_INFO, LOG_SYS, O,NULL);

Table 8.16 API for SMS Message Management

APl Name

void sendSMSMsg(unsigned int msg_event, char *pMsg);
(Support Platform: 5901B)

Descriptions

This APl is available only when the platform supports the cellular
module and the flag of SYSFUNC_NETSVC_SMS is defined in the
SDK.The APl is used to send alert message through SMS of cellular
module.

Header

alert_msg.h

Input

msg_event:
typedef enum {
MSGALERT_COLD_START =0,
MSGALERT_AUTH_FAIL,
MSGALERT_IP_CHANGE,
MSGALERT_PASSWORD_CHANGE,
MSGALERT_RESET_DEFAULT,
MSGALERT_RESTORE_CONFIG,
MSGALERT_LAN_LINK_DOWN,
MSGALERT_LAN_LINK_UP,
MSGALERT_DI1_CHANGE,
MSGALERT_DI2_CHANGE,
MSGALERT_DIT_ON,
MSGALERT_DI1_OFF,
MSGALERT_DI2_ON,
MSGALERT_DI2_OFF,
MSGALERT_IPSEC_CONNECTED,
MSGALERT_IPSEC_DISCONNECTED,
MSGALERT_OVPN_CONNECTED,
MSGALERT_OVPN_DISCONNECTED,
MSGALERT_PPTP_CONNECTED,
MSGALERT_PPTP_DISCONNECTED,
MSGALERT_UNKNOWN_COMMAND,
MSGALERT_CELLULAR_LINK_DOWN,
MSGALERT_CELLULAR_LINK_UP,

37

SE59XX Industrial Device Server

Series User Manual Platform APIs
MSGALERT_MAX
} MsgAlertBit_e;
pMsg:
Meseage contents to send out through SMS
Output NA
Return NA
#include “alert_msg.h”
Example sendSMSMsg (MSGALERT_AUTH_FAIL,"WEB authentication
failed”);

8.10 Firmware Upgrade

Table 8.17 API for Firmware Upgrade to Flash

APl Name int fw_upgrade(char *fw_addr, int length)
Descriptions Programming firmware to flash
Header sys_upgapi.h
fw_addr: buffer address of frmware image
Input
length: length of firmware buffer
Output NA
Return 0: Success; Others: Failed
#include “sys_upgapi.h”
#include “sys_reboot.h”
char *buff = NULL;
int file_size = 0;
* 1 H *,
Example /* query filesize */

file_size = fwupg_get_filesize();
/* allocate buffer to receive buffer */

buff = fwupg_alloc_shmbuf(file_size);

/* Calling firmware upgrade lib-api */
if (fw_upgrade(buff, file_size) == EXECUTE_SUCCESS)

38

SE59XX Industrial Device Server

Series User Manual Platform APIs
{
printf("Upgrade success! (System will restart automatically
after 5 secs.)\n");
sleep(5);
SysRebootSystem();
}
else
{
printf("Upgrade failed!"\nPlease making sure your fw image is
correct and try again\n\n");
}
Table 8.18 API for Allocating Share Memory Buffer for Firmware Image
APl Name char fwupg_alloc_shmbuf(unsigned int length)
Descriptions Allocate shared memory buffer for firmware image
Header sys_upgapi.h
Input Buffer length(or image length) of the shared memory
Output NA
Return Pointer of shared memory buffer address
Example See <sdk>/software/application/utils/diag_tool/frmwr-upgrd.c
Table 8.19 API for Getting Shared Memory Buffer
APl Name Char *fwupg_get_shmbuf(unsigned int length)
Descriptions Get shared memory buffer
Header sys_upgapi.h
Input Length of fiirmware image
Output NA
Return Pointer of shared memory buffer address
Example See <sdk>/webs/lighttpd/cgi/firmwareUpgrade.c
Table 8.20 API for Unlinking Shared Memory Buffer of Firmware Image
APl Name Char *fwupg_unlink_shmbuf()
Descriptions Unlink shared memory buffer of firmware image
Header sys_upgapi.h
Input NA
Output NA

39

SE59XX Industrial Device Server

Series User Manual Platform APIs
Return NA
Example See <sdk>/webs/lighttpd/cgi/firmwareUpgrade.c
8.11 System Reboot
Table 8.21 API for Rebooting System with SIGTERM

APl Name void SysRebootSystem(void)
Descriptions Reboot system with the signal of “SIGTERM”
Header sys_reboot.h
Input NA
Output NA
Return NA

#include “sys_reboot.h”
Example

SysRebootSystem();
Table 8.22 API for Rebooting System without SIGTERM

APl Name void RebootSystem2(void)
Descriptions Reboot system without the signal of “SIGTERM"
Header sys_reboot.h
Input NA
Output NA
Return NA

#include “sys_reboot.h”
Example

RebootSystem2();

40

SE59XX Industrial Device Server

Series User Manual Platform APls

8.12 System Management

Table 8.23 API for Getting System Information (Version of Firmware)

int SysBootloaderVersion(SysVersion_t *ver)
int SysKemelVersion(SysVersion_t *ver)

il il void SysAPVersion(SysVersion_t *ver)
int SysCPLDVersion(SysVersion_t * ver)
Get boot loader version

Descriptions Get kernel v‘ersion
Get AP version
Get CPLD version

Header ver_info.h

Input Structure pointer of SysVersion_t
Bootloader version information
Kernel version information

Output

AP version information
CPLD version information

Return 0: Success; Others: Failed

#include “ver_info.h”
SysVersion_t ver;

SysBootloaderVersion(&ver);
printf("blVer: %u.%02u\n", ver.VerMajor, ver.VerMinor);

SysKemelVersion(&ver);
Example printf(“kernelVer: %u.%02u\n", ver.VerMajor, ver.VerMinor);

SysAPVersion(&ver);
printf(“apVer: %u.%02u\n", ver.VerMajor, ver.VerMinor);

SysCPLDVersion(&ver);
printf(“cpldVer: %u.%02u\n", ver.VerMajor, ver.VerMinor);

11

SE59XX Industrial Device Server

Series User Manual Platform APIs
Table 8.24 API for Getting Firmware Version (Only Kernel and AP)
char *SysStrKernelVersion(void *info
APl Name char *gyysStrAPVersion(voigl *info))
Descriptions Get kernel v.ersion
Get AP version
Header ver_info.h
Input NA
Output NA
Kemel version information
Return . . .
AP version information
#include “ver_info.h”
Example printf(“kernel Ver: %s\n", SysStrKemelVersion(NULL));
printf(“apVer: %s\n", SysStrAPVersion(NULL));
Table 8.25 API for Executing System Command
APl Name int ExecuteSysCommand(char *cmd, int limit)
Descriptions Execute system command (popen, pipe stream)
Header sys_cmd.h
cmd:
string buffer of system command
Input limit:
limitation of reading length after command execution
-1 or 0 to indicate to ignore limitation check
Output NA
Return 0: failed; 1: success
#include “sys_cmd.h”
Example ExecuteSysCommand(‘/sbhin/reboot”, -1);

42

SE59XX Industrial Device Server

Series

User Manual Platform APIs

8.13 Cellular Control (Cellular 3G/4G platform only)

Table 8.26 API for Establishing Cellular Connection

APl Name void Dial_connect(void)
Descriptions Establish the 3G/4G connection
Header lib_dial.h
Input NA
Output NA
Return NA
#include “lib_dial.h”
//setting INI
NETWORK_3G_CONFIG Conf;
SysConf_Shm_SetKey(SYSCONF_FEATURE_NETWORK_3G ,&Conf,
NET3G_KEY_APNCODE, Public’);
SysConf_Shm_SetKey(SYSCONF_FEATURE_NETWORK_3G ,&Conf,
Example NET3G_KEY_PINCODE,"0000");
SysConf_Update_Shmcfg (SYSCONF_FEATURE_NETWORK_3G, &Conf);
Dial_connect();
Table 8.27 API for Terminating Cellular Connection
APl Name void Dial_disconnect(void)
Descriptions Disconnect the 3G/4G connection
Header lib_dial.h
Input NA
Output NA
Return NA
#include “lib_dial.h”
Example c)
Dial_disconnect();

43

SE59XX Industrial Device Server

Series User Manual Platform APIs
Table 8.28 API for Getting Status Information of Cellular Connection
APl Name int Get_dial_info(DIAL_INFO *pinfo)
Descriptions Get dialing information
Header lib_dial.h
Input pinfo: Pointer of DIAL_INFO
Output Dialing information
TypeDIAL_STATE_E
Return Success: DIAL_STATUS_CONNCETING/DIAL_STATUS_CONNCETED
Error: DIAL_STATUS_DISCONNCET
#include “lib_dial.h”
DIAL_INFO dial_info;
Get_dial_info(&dial_info);
Example printf(‘connect state: %s\n”", dial_info.connState);
printf(“dial state: %s\n", dial_info.dialState);
printf(“pin state: %s\n", dial_info.pinState);
printf(“ip: %s\n”", dial_info.ip);
Table 8.29 API for Getting GPS Information (for GPS supported Model only)
APl Name int Get_gps_info(GPS_INFO *pinfo)
Descriptions Get GPS information
Header lib_dial.h
Input pinfo: Pointer of GPS_INFO
Output GPS information
Type: cmd_return_E
Return Success: CMD_GET_SUCCESS
Error: CMD_GET_ERROR/CMD_SEND_FAIL/CMD_NOT_SEARCH/
CMD_LEN_SHORT
#include “lib_dial.h”
GPS_INFO gps_info;
Example Get_gps_info(&gps_info);

printf(“latitude: %s\n", gps_info.latitude);
printf(‘longitude: %s\n", gps_info.longitude);

44

SE59XX Industrial Device Server

Series User Manual Platform APIs
Table 8.30 API for Checking Supporting of 4G on Hardware Platform

APl Name int Sys4GSupport(void)
Descriptions Check if 4G is supported on current platform
Header cellular_api.h
Input NA
Output NA
Return 1: 4G function is supported on this platform

0: 4G function is not supported on this device

#include “cellular_api.h”

If(Sys4GSupport()) {
Example printf(“4G module is supported on this platform”);
}
Table 8.31 API for Detecting 4G Module on Hardware Platform

APl Name int Sys4GModule(void)
Descriptions Check if 4G module is detected on current platform
Header cellular_api.h
Input NA
Output NA
Return 1: 4G module is supported on this platform

0: 4G module is not supported on this device

#include “cellular_api.h”
Example If(Sys4GSupport()) {

printf(“4G module is supported on this platform”);
}

45

SE59XX Industrial Device Server

Series User Manual Platform APIs
Table 8.32 API for Getting the 4G Interface Name
APl Name int Sys4Ginterface(char *plfname)
Descriptions Get used 4G interface name
Header cellular_api.h
Input plfname: pointer of buffer
Output Interface name of 4G interface
-1: 4G interface is not named with “eth” interface. In such case, you can
Retun read “plfname” to get 4G interface name
>= 0: if 4G interface is named as “eth”, index is retumed
#include “cellular_api.h”
intindex = -1;
char interface|16] = {0};
if((index = Sys4GInterface(&interface)) < 0) {
Example printf(“4G interface: %s\n”, interface);

} else {
printf(“4G interface: eth%d\n”", index);
}

46

SE59XX Industrial Device Server
Series

INI Configs Read/Write (Settings

User Manual Management)

9 INI Configs Read/Write (Settings Management)

Most of the device’s configurations in SDK are stored in INI files. The system allows a number of
APIs to help users easily access these INI files. With these APIs, the users can easily access
particular settings by using specified feature IDs. Table 9.1 lists feature IDs currently supported
in the SDK package:

Table 9.1 Feature IDs Supported in SDK Package

Feature ID | KeyHeahdr
SYSCONF_FEATURE_ALL 0x00 NA
SYSCONF_FEATURE_BOARD 0x01| board_conf.h
SYSCONF_FEATURE_COM 0x02| com_confh
SYSCONF_FEATURE_SYSTEM 0x03 system_conf.h
SYSCONF_FEATURE_SYSLOG 0x04 | syslog_conf.h
SYSCONF_FEATURE_NET 0x05| net_conf.h
SYSCONF_FEATURE_NETDNS 0x06| net_conf.h

SYSCONF_FEATURE_PORTFORWARD 0x07 port_forward.h
SYSCONF_FEATURE_NETWORK_3G |0x08| network_3g.h

SYSCONF_FEATURE_NAT 0x09| nat_conf.h
SYSCONF_FEATURE_SMS 0x0A sms_confh
SYSCONF_FEATURE_SNMP 0x0B| Reserved
SYSCONF_FEATURE_VIP 0x0C| Reserved
SYSCONF_FEATURE_OVPN 0x0D| Reserved
SYSCONF_FEATURE_PPTP OxOE| Reserved
SYSCONF_FEATURE_IPSEC OxOF Reserved
SYSCONF_FEATURE_RSTP 0x10| Reserved
SYSCONF_FEATURE_URLINK O0x11| Reserved
SYSCONF_FEATURE_SMTP 0x12| Reserved
SYSCONF_FEATURE_PING_REBOOT [0x13| Reserved
SYSCONF_FEATURE_FIREHOL Ox14| Reserved
SYSCONF_FEATURE_DDNS 0x15 Reserved
SYSCONF_FEATURE_PAMAUTH 0x16| Reserved
SYSCONF_FEATURE_NETOPT O0x17| Reserved

SYSCONF_FEATURE_USER 0x18 Reserved

47

SE59XX Industrial Device Server INI Configs Read/Write (Settings

Series User Manual Management)
Feature ID | KeyHeahdr
SYSCONF_FEATURE_OEM4 OxFA| Reserved
SYSCONF_FEATURE_OEM3 OxFB| Reserved
SYSCONF_FEATURE_OEM2 OxFC| Reserved
SYSCONF_FEATURE_OEM1 OxFD| Reserved
SYSCONF_FEATURE_OEM OxFE| oem_confh

Note: Feature settings are available only when the specified functions are available in the SDK
supported list.

9.1 Read Configurations from Shared Memory

Table 9.2 API: Read Configurations from Shared Memory

APIName |int SysConf_Get_Shmcfg(unsigned char u8ld, void *pConf)
Descriptions Read configurations from shared memory to pConf based on feature ID

Header shmapi.h
Input u8id:
P feature ID
pConf:
Output pointer of buffer
Return 0: Success; -1: Failed

#include “shmapi.h”
#include “net_conf.h”

Example NET_CONFIG conf[MAX_NIC_UMBERY];

// Read NET configuration from shared memory
SysConf_Get_Shmcfg(SYSCONF_FEATURE_NET, &conf[0]);

48

SE59XX Industrial Device Server
Series

INI Configs Read/Write (Settings

User Manual Management)

Table 9.3 API: Get Specified Key of System Configuration based on Feature ID from Shared
Memory

int SysConf_Shm_GetKey(unsigned char u8ld, void *pConf, char *key,
char *value)
Get value of specified key based on feature ID and configuration
pointer (pConf)
Header shmapi.h
u8id:
feature ID
pConf:
pointer of feature configurations
key:
key string in INI file
value:
key value
Return 0: Success; -1: Failed

APl Name

Descriptions

Input

Output

#include “shmapi.h”

#include “net_conf.h”
NET_CONFIG conf[MAX_NIC_NUMBER];
char ip[16] = {0};

Example // Read NET configuration from shared memory
SysConf_Get_Shmcfg(SYSCONF_FEATURE_NET, &confl0]);
// Read IPv4 Address

SysConf_Shm_GetKey(SYSCONF_FEATURE_NET, &conf]0],
NET_KEY_IP4_ADDR, ip);

49

SE59XX Industrial Device Server
Series

INI Configs Read/Write (Settings

User Manual Management)

Table 9.4 API: Read Value of Specified Key based on Feature ID and Section Index from Shared
Memory

int SysConf_Get_ShmKey(unsigned char u8ld, unsigned char
section, char *key, char *value)

Read value of specified key from shared memory based on feature
ID and section index

Header shmapi.h

APl Name

Descriptions

u8id:
feature ID
Input secti0|.1: . .
section index in INI file
key:
key string in INI file
value:
Output key value
Return 0: Success; -1: Failed
#include “shmapi.h”
#include “system_conf.h”
char user|32] = {0};
char pass[32] = {0};
Example

// Read user name and password

SysConf_Get_ShmKey(SYSCONF_FEATURE_SYSTEM, 0,
SYSTEM_KEY_USERNAME, user);

SysConf_Get_ShmKey(SYSCONF_FEATURE_SYSTEM, 0,
SYSTEM_KEY_PASSWORD, pass);

50

SE59XX Industrial Device Server
Series

INI Configs Read/Write (Settings

User Manual Management)

9.2 Set Configuration to Shared Memory

Table 9.5 API: Set Value of Specified Key Based on Feature ID

int SysConf_Shm_SetKey(unsigned char u8ld, void *pConf, char
*key, char *value)
Descriptions|Set value of specified key to pConf based on feature ID
Header shmapi.h
u8id:
feature ID
pConf:
pointer of feature configurations
key:
key string in INI file
value:
key value
Output NA
Return 0: Success; -1: Failed

#include “shmapi.h”
#include “net_conf.h”

APl Name

Input

NET_CONFIG conf[MAX_NIC_NUMBER |;
char ip[16] = “192.168.5.123"

Example // Read original NET configuration from shared memory
SysConf_Get_Shmcfg(SYSCONF_FEATURE_NET, &conf|0]);

// Update IPv4 Address
SysConf_Shm_SetKey(SYSCONF_FEATURE_NET, &conf]0],
NET_KEY_IP4_ADDR, ip);

51

SE59XX Industrial Device Server
Series

INI Configs Read/Write (Settings

User Manual Management)

Table 9.6 API: Write Configurations based on Feature ID

APl Name |int SysConf_Set_Shmcfg(unsigned char u8ld, void *pConf)
Descriptions|Write configurations to shared memory based on feature ID

Header shmapi.h
u8lid:
Input feature ID
pConf:
pointer of buffer
Output NA
Return 0: Success; -1: Failed

#include “shmapi.h”
#include “system_conf.h”

NET_CONFIG conf[MAX_NIC_ NUMBER J;
char ip[16] = “192.168.5.123"

Examble // Read original NET configuration from shared memory
P SysConf_Get_Shmcfg(SYSCONF_FEATURE_NET, &conf[0]);
// Update IPv4 Address
SysConf_Shm_SetKey(SYSCONF_FEATURE_NET, &conf]0],
NET_KEY_IP4_ADDR, ip);

// Update Configurations to shared memory
SysConf_Set_Shmcfg(SYSCONF_FEATURE_NET, &conf[0]);

52

SE59XX Industrial Device Server
Series

INI Configs Read/Write (Settings

User Manual Management)

9.3 Update Configurations to INI Files

Table 9.7 API: Update Configurations Based on Feature ID to Shared Memory and INI file

APl Name |int SysConf_Update_Shmcfg(unsigned char u8ld, void *pConf)
Update feature configurations to shared memory and INI file
based on feature ID
Header shmapi.h
u8id:
feature ID
pConf:
pointer of buffer
Output NA
Return 0: Success; -1: Failed
#include “shmapi.h”
#include “‘com_conf.h”

Descriptions

Input

// Change COM port mode to RS-232
SysConf_Shm_SetKey(SYSCONF_FEATURE_COM, &conf{0],

COM_KEY_MODE, “0");

Example
// Update IPv4 Address
SysConf_Shm_SetKey(SYSCONF_FEATURE_NET, &conf]0],

NET_KEY_IP4_ADDR, ip);

// Update Configurations to shared memory and INI file
simultaneously
SysConf_Update_Shmcfg(SYSCONF_FEATURE_NET,
&conf[0]);

53

SE59XX Industrial Device Server
Series

INI Configs Read/Write (Settings

User Manual Management)

Table 9.8 API: Update Key Value based on Feature ID to Shared Memory and INI File

int SysConf_Update_ShmKey(unsigned char u8ld, unsigned
char section, char *key, char *value)
Update key value to shared memory and INI file based on
feature ID
Header shmapi.h
u8id:
feature ID
pConf:
pointer of buffer
key:
key string in INI file
value:
key value
Output NA
Retumn 0: Success; -1: Failed

APl Name

Descriptions

Input

#include “shmapi.h”
#include “‘com_conf.h”
// Update Password:"12345678" to shared memory and
INI file
SysConf_Update_ShmKey(SYSCONF_FEATURE_SYSTEM,
0, SYSTEM_KEY_PASSWORD, “12345678");

Example

54

SE59XX Industrial Device Server
Series

INI Configs Read/Write (Settings

User Manual Management)

9.4 Add New Configurations

The SDK package already provides an example for users to easily implement the INI feature
settings. Here are the steps required to follow:

1. Example of feature configurations can be found in the following files and their
corresponding directories:

<sdk>/software/include/sysconf.h

<sdk>/software/ include /oem_conf.h

<sdk>/software/library/conf/conf_handler.c (required while adding/modifying the feature
name)

<sdk>/config/<target>/defconfg.h

2. You can define any new feature IDs in “<sdk>/software/include/sysconf.h” as shown in
Figure 9.1 below the comment “/* add your own feature type before “OEM” */".

vi <sdk>/software/include/sysconf.h

typedef enum {
SYSCONF_FEATURE_ALL
SYSCONF_FEATURE_BOARD
SYSCONF_FEATURE_COM
SYSCONF_FEATURE_SYSTEM

SYSCONF_FEATURE_SYSLOG
SYSCONF_FEATURE_NET
SYSCONF_FEATURE_NETDNS
SYSCONF_FEATURE_PORTFORWARD
SYSCONF_FEATURE_NETWORK_3G
SYSCONF_FEATURE_NAT
SYSCONF_FEATURE_SMS
SYSCONF_FEATURE_SNMP
SYSCONF_FEATURE_VIP
SYSCONF_FEATURE_OVPN
SYSCONF_FEATURE_PPTP
SYSCONF_FEATURE_IPSEC
SYSCONF_FEATURE_RSTP
SYSCONF_FEATURE_URLINK

F_FEATURE_SMTP

your own feature

F_FEATURE_OEM4
SYSCONF_FEATURE_OEM3
SYSCONF_FEATURE_OEM2
SYSCONF_FFATIRFE _OFM1
SYSCONF FEATURE OEM
SYSCONF_FEATURE_UNKNOWN

} SYSCONF_FEATURE;

Figure 9.1 Type Definition of Feature IDs

3. Then you can define the feature section name and supported keys in
‘<sdk>/software/include/oem_conf.h"” as shown in Figure 9.2.

vi <sdk>/software/include/oem_conf.h

55

SE59XX Industrial Device Server
Series

INI Configs Read/Write (Settings

User Manual Management)

Figure 9.2 Defining of Feature Section Name

4. Next, you can define a structure to handle settings in
‘<sdk>/software/include/oem_conf.h” as shown in Figure 9.3.

vi <sdk>/software/include/oem_conf.h

__oem_config__ {
uBReserved_1j
uBReserved_2y
uBReserved_3;

unsigned ch uBReserved_4[8];
1 DEM_CONFIG;

Figure 9.3 Defining stucture to handle SDK settings

5. Next, you can define function names that are used to init/read/write feature settings the
oem_conf.h file as shown in Figure 9.4.

vi <sdk>/software/include/oem_conf.h

int OEMCfgInit(void);
void OEMGetKeyVal(void *pConf, char *pkKey, char *pVval);
int OEMSetKeyVal(void *pConf, char *pKey, char *pVal);

int OEMCfgRead(dictionary *pIni, void *pCfg, int sect);
int OEMCfgWrite(dictionary *pIni, void *pCfg, int sect);

Figure 9.4 Defining function names for feature settings

56

SE59XX Industrial Device Server
Series

INI Configs Read/Write (Settings

User Manual Management)

6. Next, add the ID of “SYSCONF_FEATURE_OEM" in gSYSConfHandler]] in the file
‘<sdk>/software/library/conf/conf_handler.c” as shown in Figure 9.5 and Figure 9.6.

SYSCONF_HANDLER g_SYSConfHandler[] = {
{SYSCONF_FEATURE_BOARD, BOARD_CFG_FILE, BOARDCfgInit, BOARDCFgRead,
IULL, &g_BOARDCTgKey[0], BOARDGetKeyval, BOARDSetKeyval, MAX_BOARDCFG_KEY, 1},
{SYSCONF_FEATURE_COM, COM_CFG_FILE, COMCFgInit, COMCfgRead,
COMCfgWrite, &g_COMCfgKey[8], COMGetKeyval, COMSetKeyVal, MAX_COMCFG_KEY, MAX_COM_NUMBER},
{SYSCONF_FEATURE_SYSTEM, SYSTEM_CFG_FILE, SYSTEMCfgInit, SYSTEMCfgRead,

SYSTEMCFgWrite, &g SYSTEMCfgKey[0], SYSTEMGetKeyval, SYSTEMSetKeyVal, MAX SYSTEMCFG KEY, 1},
{SYSCONF_FEATURE_SYSLOG, SYSLOG_CFG_FILE, SYSLOGCfgInit, SYSLOGCfgRead,

SYSLOGCFgWrite, &g_SYSLOGCfgKey[0], SYSLOGGetKeyval, SYSLOGSetkeyVal, MAX_SYSLOGCFG_KEY, 1},
{SYSCONF_FEATURE_NET, NET CFG FILE, NETCfgInit, NETCfgRead,

NETCfgWrite, &g_NETCfgkey[8], NETGetKeyVal, NETSetKeyval, MAX_NETCFG_KEY, MAX_NIC_NUMBER},
{SYSCONF_FEATURE_NETDNS, MET_DNSCFG_FILE, NETDnsCfgInit, NETDnsCfgRead,

NETDnsCfgWrite, &g NETDnsCfgKey[0], NETGetDnsKeyVal, NETSetDnsKeyVal, MAX_NETDNSCFG_KEY, 1},

Figure 9.5 Adding sysconfig ID in conf_handler.c by locating the g_SYSConfHandler{]

(SYSCONF_FEATURE_OEM, OEM_CFG FILE, OEMCfgInit, OEMCfgRead,
OEMCfgWrite, &g OEMCFgKey[©], OEMGetKeyval, OEMSetKeyVal, MAX OEMCFG KEY, 1},
{SYSLUNF_FEATURE UNKNUWN, {0}, WOLL, WULL, WULL, WULL, WULL, WNULL, ©, ©Ff

Figure 9.6 Adding sysconfig ID

7. Then, define the key mapping table in “<sdk>/software/library/conf/oemconf.c” file as
shown in Figure 9.7.
vi <sdk>/software/library/conf/oemconf.c

SYSCONF_KEY g OEMCFgKey[] =

{
{SYSCONF_KEYTYPE_INT, 0, OEM_SECT NAME, OEM_KEY_ RSV1},
{SYSCONF_KEYTYPE_INT, 0, OEM_SECT NAME, OEM_KEY RSV2},
{SYSCONF_KEYTYPE_INT, @, OEM_SECT NAME, OEM_KEY RSV3},
{SYSCONF_KEYTYPE_STR, ©, OEM_SECT_NAME, OEM_KEY_RsV4},
{SYSCONF_KEYTYPE _UNKNOWN, ©, {6}, {8}}

Figure 9.7 Defining Key Mapping Table

8. Next, implement init function in “<sdk>/software/library/conf/oemconf.c” file as shown in
Figure 9.8.
vi <sdk>/software/library/conf/oemconf.c

int OEMCfgInit(void)
L

int ret = -
FILE *pf

DBGPRINT("%s, I co r %s Func__, OEM_CFG_FILE);
pf = fopen(DEM CFG_FILE,

if (pf == N)

DBGPRINT(nable to open file: %s\n", OEM_CFG_FILE);

return ret;

}
fprintf(pf,
\n

n
\n", OEM_SECT_NAME, OEM_KEY_RSV1, DEFCONF_OEM_RSV1,
OEM_KEY_RSV2, DEFCONF_OEM_RSVZ,
OEM_KEY_RSV3, DEFCONF_OEM_RSV3,
OEM_KEY_RSV4, DEFCONF_OEM_RSV4);

fclose(pf);
ret = 0;

return ret;

Figure 9.8 Implementing init function

57

SE59XX Industrial Device Server
Series

INI Configs Read/Write (Settings

User Manual Management)

9. Then, implement read function in “<sdk>/software/library/conf/oemconf.c” file as shown
in Figure 9.9.

vi <sdk>/software/library/conf/oemconf.c

int OEMCfgRead(dictionary *pIni, void *pCfg, int sect)
{

int ret = -1;

char *pStrval = NULL;

OEM_CONFIG *pConf = (OEM_CONFIG *) pCfg;
int i1 = 6;

sure ther are for the tion
8 iniparser_ getsecnkeys(p OEM_SECT_NAME)) {
for (1 = ©; 1 < MAX_OEMCFG_KEY; i++) {

pstrval = SVSGetINIStrVaIue(pIni, g_OEMCfgKey[i].section, g_OEMCfgKey[i].key);

if (pStrval == NULL || OEMSetKeyVal(pConf, g_OEMCfgKey[i].key, pStrval) < @) {
break;

} else {
DBGPRINT("%s: [%s]\n", g OEMCfgKey[i].key, pStrval);
ret = 0;

}

1
} else {
fprintf(stderr, "Unable to find ton [%s]\n", OEM_SECT_NAME);

return ret;

Figure 9.9 Implementing Read Function

10. Next, implement write function in “<sdk>/software/library/conf/oemconf.c” file as shown
in Figure 9.10.

vi <sdk>/software/library/conf/oemconf.c

int OEMCfgWrite(dictionary *pIni, void *pCfg, int sect)

int ret = -1

char a KeyVal[] = {6};

OEM_CONFIG *pOEMConf = (OEM_CONFIG *) pCfg;
int 1 = 0;

// make sure ther are keys for the section
if < iniparser_getsecnkeys(pIni, OEM_SECT_NAME)) {
for (i = 0; i1 < MAX_OEMCFG_KEY; i++) {
memset(a_Keyval, 0, sizeof(a_Keyval));
OEMGetKeyVal(pOEMConf, g_OEMCfgKey[i].key, a_Keyval);
if ((ret = sysSetKeyvalue(pIni, g_OEMCfgKey[i].section, g_OEMCfgKey[i].key, a_Keyval)) < 0) {
break;
} else {
ret = 0;

}

}
} else {
fprintf(stder Unable to find secti [%s]\n", OEM_SECT_NAME);

return ret;

Figure 9.10 Implementing Write Function

11. Then, implement key get function in “<sdk>/software/library/conf/oemconf.c” file as
shown in Figure 9.11.

vi <sdk>/software/library/conf/oemconf.c

58

SE59XX Industrial Device Server
Series

INI Configs Read/Write (Settings

User Manual Management)

int OEMSetKeyval(void *pConf, char *pKey, char *pval)

int ret = 08;
OEM_CONFIG *pConfig = (OEM_CONFIG *) pConf;

if (strncmp(pKey, OEM_KEY_RSV1, strlen(OEM_KEY_RSV1)) == 0) {
pConfig->uBReserved_1 = (atoi(pval))? 1 : o;

} else if (strncmp(pKey, OEM_KEY_RSV2, strle|
pConfig->uBReserved_2 (atoi(pval))? 1 : 0;

} else if (strncmp(pKey, OEM_KEY_RSV3, strlen(OEM_KEY_RSV3)) == 8) {

pConfig->uBReserved_3 = (unsigned short)(atoi(pVval));
} else if (strncmp(pKey, OEM_KEY_RSV4, strlen(OEM_KEY_RSV4)) == 8) {
strncpy((char *)pConfig->uBReserved 4, pVal, 8);
} else {
strepy(pval, "unknown");
ret = -1;

}

return ret;

Figure 9.11 Implementing Key Get Function

12.Next, implement key set function in “<sdk>/software/library/conf/oemconf.c” file as
shown in Figure 9.12.

vi <sdk>/software/library/conf/oemconf.c

int OEMSetKeyVal(wvoid *pConf, char *pKey, char *pval)
{
int ret = 0;
OEM_CONFIG *pConfig = (OEM_CONFIG *) pConf;

if (strncmp(pKey, OEM_KEY_RSV1, strlen(OEM_KEY_RSV1)) == I
pConfig->u8Reserved_1 = (atoi(pval))? 1 : ©;

} else if (strncmp(pKey, OEM_KEY_RSV2, strlen(OEM_KEY_RSV2)) == ¢
pConfig->usReserved 2 = (atoi(pval))? 1 : 8;

} else if (strncmp(pKey, OEM_KEY_RSV3, strlen(OEM_KEY_RSW3)) == ¢
pConfig->u8Reserved_3 = (unsigned short)(atoi(pVal));

} else if (strncmp(pKey, OEM_KEY_RSV4, strlen(OEM_KEY_RSV4)) == ¢
strncpy((char *)pConfig->u8Reserved_4, pVal, 8);

} else {
strcpy(pval, "Unknown");
ret = -1;

1

return ret;

Figure 9.12 Implementing Key Set Function

13. Then, edit default configurations in “<sdk>/config/<target>/defconf.h” file as shown in
Figure 9.13.

Figure 9.13 Editing Default Configurations

14.Next, compile the software, and make sure that there is no error occurred after compiling
using the following command.

make swbuild

59

SE59XX Industrial Device Server
Series

INI Configs Read/Write (Settings

User Manual Management)

15. Build the system and burn the new firmware to your target device. Please refer the Chapter
6: Source Code Compilation and Chapter 7: Upgrade System/Firmware Image to Hardware
platform for more details.

16.Open debug console and connect to the target device. Run the command below to check
whether the feature settings are working as shown in Figure 9.14:

confutil ¢ 254 + 6

confutil -c 254 -r 6

[oxfe, Sec. #: 1](oemcfg.ini): OEM Configurations
- oem_rsv_1

- oem_rsv 2
- oem _rsv 3
- oem_rsv 4

Figure 9.14 Running Command in Open Debug Console

17.Run the list of commands in Figure 9.15 to check each key value from debug console:

confutil -c oem_rsv_1
&
confutil -c oem_rsv_2
1
confutil -c oem_rsv_3
1234

confutil -c oem_rsv_4
test

Figure 9.15 Running Commands to Check Key Values

18. Running another list of commands in Figure 9.16 to change key values and check if the
function works:

it confutil oem_rsv_1
it confutil oem rsv 2
it confutil oem_rsv_3
it confutil oem_rsv_4
it confutil oem rsv 1

it confutil oem _rsv_2
2
it confutil oem_rsv_3

it confutil oem rsv 4
estl234

Figure 9.16 Running Another Set of Commandsin Open Debug Console

60

SE59XX Industrial Device Server

Series

User Manual Software

10 Software

This chapter provides overview of the software directories or folders under the ATOP SDK. These
software folders in ATOP SDK collect common libraries and applications. Figure 10.1 shows an
example of directory list on the console.

-fworkspace/sdk_0108/software$

total 108

drwxrwxr - 4096
drwxrwxr - 4096
drwxrwxr - 4096
drwxrwxr - 4096
drWxrwxr- 4096
-FW-TW-T-- 1844
-TW-TW-T-- 11

28 B 7
28 .
8 2 application/
22 7 include/
28 2 library/
8 7 Maketile

28 5 product.mk

Figure 10.1 Software Folders in SDK

10.1 Application

Table 10.1 briefly summarizes the descriptions of software folder under the “application” directory.

Table 10.1 Descriptions of Application Folders

Folder

Descriptions

system

This folder contains common applications and scripts.

utils

This folder contains diagnostic tools.

10.2 Library

Table 10.2 briefly summarizes the descriptions of software folder under the “library” directory.

Table 10.2 Descriptios of Library Folder

Folder

Descriptions

commo

n|This folder collects common libraries such as platform 10 access.

conf

This folder collects the libraries related to the INI files access.

eeprom

This folder collects the libraries related to the EEPROM access.

firewall

This folder collects the libraries related to the Firewall operations.

mobile

This folder collects the libraries related to the 3G/4G module control.

61

SE59XX Industrial Device Server

11 Web

The ATOP SDK package supports a lightweight WEB server called “lighttpd”. This chapter provides
information related to the web server on the platform. Note that the default WEB URL is either
http://10.0.50.100 or http://192.168.1.100. The CGlI (Common Gateway Interface) files and
webpages are placed in these directories:

 CGlI Files: <SDK>/webs/lighttpd/cgi/

« Webpages: <SDK>/webs/lighttpd/web_pages/

111 Web Account/Password

By default, the WEB login account and password are set as followings:
o User Name: admin
» Password: default

11.2 Change Web Logo

The users can replace the default image file of the web logo with your own logo at this file location:
<sdk>/webs/lighttpd/web_pages/images/logo.gif,
with the following image size:
» Width: 200px
» Height: 48px.

11.3 Add a New Webpage in Selection Menu

The user can modify the menu items or new webpage by editing the following reference file:
<sd>/webs/lighttpd/web_pages/javascript/quickmenu.js

62

http://10.0.50.100/

SE59XX Industrial Device Server

Series

User Manual

Web

var menultem = [
{parent:
{parent:
{parent:
{parent:
{parent:
{parent:
{parent:
{parent:
{parent:
{parent:

", name: 'System Status’, web: "},

'System Status’, name: ‘Overview', web: 'Overview html'},

", name: 'Log Settings’, web: "},

'Log Settings', name: 'System Log Settings', web: "sysLogSettings.htmil’},
‘Log Settings’, name: 'System Log', web: "sysLog.htmil’},

", name: 'System Setup’, web: "},

'System Setup', name: 'Admin Settings', web: 'Security.htm[},

'System Setup', name: 'Firmware Upgrade’, web: firmwareUpgrade.html'},
'System Setup', name: 'Restore Configuration’, web: ‘imponExport.html'},
", name: 'Rebool’, web: 'Rebool.html’}

Figure 11.1 Adding New Webpage in Selection Menu

63

SE59XX Industrial Device Server

Series User Manual System

12 System

In ATOP SDK repository, most configurations are placed under “<sdk>/config/<target>/" folder.
The figure below illustrates contents of target configurations:

drwxr-xr-x 2 LELY
drwxr-xr-x 3 benv
-MW-r--r-- 1 benv
-FW-T--r-- benv
-FW-F--r-- benv
-FW-T--r-- benv
-FW-r--r-- benv
-rW-r--r-- benv
“FW-r==-r-- benv
-rW-r--r-- Y

-/

e

ATSDKCNR_A2201.h

default.dat

defconf.h

function.conf
:26 model_dep.h

plat_defconfig

6 platform.conf
sys_ver.h

[ury

SFSFS NSRS S S

1
1
1
1
1
1
1

Figure 12.1 System Target Configurations

12.1 System Start-up Script Files

¢ On platform device, system start-up scripts are placed under “<sdk>/filesystem/etc/init.d/"
folder.
¢ When system initializes, all features’ settings are starting in S07/ogging file.

#!1/bin/sh

/usr/bin/confutil -c 0 -r 1

Figure 12.2 System Start-up Script File

o ATOP's main initial flow is implemented in S27SysInit file.

12.2 Account and Password of Debug Console

The usemmame and password for accessing debug console has the following default values:
e User Name: root
e Password: NULL

64

SE59XX Industrial Device Server

Series User Manual System

12.3 Change System Version Information

You can update or change system version information of you firmware, which includes boot
loader version, signature, software app version and kernel version, by modifying the following file:
<sdk>/config/<target>/platform.conf as shown in Figure 12.3.

Figure 12.3 Changing of System Version Information

Then, run the following commands to rebuild the library, and update version information:
make swhuild; make image;
make swhuild; make fwimg;

12.4 Platform Default Configurations

The initial default system settings of the customizable firmware project are configured in
‘<sdk>/config/<target>/default.dat”. Users can easily change each project’s default settings in
this file as shown in Figure 12.4.

admin
default
hostname
= Disable
= Disable
ntp_timezone =0
ntp_server = .
ntp_dls_enable
ntp_dls_month_b

.0.8
Disable

o n I @

eb_mode
telnet_en
ssh_en = 1
modbus_slave_id = 255
modbus_port = 65535
relay_bmap =

=0

tatic

1

64

= 100
:160:29:22:d6:73
= 192.168.1.100

Figure 12.4 Platform Default Configurations

65

SE59XX Industrial Device Server

Series User Manual System

12.5 Kernel Configurations

The project’s kernel configuration file is located in “<sdk>/config/<target>/plat_defconfig” file. To
change it, you may execute the commands in Figure 12.5 to enable or disable configurations.

// Switch to kernel folder
cd <SDK>/kernel/linux

// Running menuconfig command

Make arch=ARM
CROSS_COMPILE=/opt/ti-am335x-linux-devkit-08.00.00.00/bin/arm-linux-gnueabihf
menuconfig

// Edit kernel support and save configurations
// Copy the new configurations to the target folder
cp .config <SDK>/config/<Target>/plat_defconfig

Figure 12.5 Kemel Configurations

12.6 Flash Partition Layout

ATOP SDK currently limits the modification of flash partitions. We do not recommend the users
to add, modify, or delete the flash partition layout, as the flash partitions are pre-defined in
hardware configurations. ATOP SDK only provides the hardware configurations in binary format.
If users indeed needed to modify the flash partition layout, the users can request a layout update
before product shipment.

12.7 Change COM Number

The physical COM port(s) support(s) varies with hardware platforms. If the physical COM port
number does not match with your hardware platform, you can modify it using the following file:

<sdk>/software/include/sys_uart.h

66

SE59XX Industrial Device Server

Series User Manual System

SysUARTNumber (void);
t_init_set(int);

Figure 12.6 Changing of COM Port Number

67

SE59XX Industrial Device Server
Series

SMS Management (3G/4G Cellular

User Manual Only)

13 SMS Management (3G/4G Cellular Only)

ATOP SDK provides a simple mechanism for users to easily manage SMS with sms tools. This
chapter elaborates on how to manage your SMS configuration and operations.

Note: Before using it, please make sure that the SIM card is already equipped or inserted in your
hardware device.

13.1 SMS Settings

In ATOP SDK, SMS settings are managed by SMS_CONFIG data structure inside the
‘esdk>/software/include/sms_conf.h” file as shown in Figure 13.1. Table 13.1 provides
description of SMS setting fields.

cture for SMS settings

__sms_config__ {
usMode;
uBReply;

uBReserved[2];

a_uBPassword[SMS_BUFFER_LEN];

a_uBMessage[SMS_MESSAGE_LEN];

a_uB8Alias[MAX_SMS_PHONE_NUM][SMS_BUFFER_LEN];

a_u8PhoneNum[MAX_SMS_PHONE_NUM][SMS_BUFFER_LEN];

u32RemotAccess[MAX_SMS_PHONE_NUM]; e L C f the Phone

u32AlertBitMap[MAX_SMS_PHONE_NUM];
uBAltMsgDelay[MAX_SMS_ALERT_NUM];

Figure 13.1 SMS Settings

Table 13.1 Description of SMS Settings

Field Description
u8Mode SMS management mode
« 0:Disable
¢ 1:Free, no limitation
« 2:Restricted, only configured phone number is available

u8Reply Enable/Disable SMS reply when receiving SMS remote control
command

a_u8Password Password of SMS remote control (max. 16 characters)

a_u8Message Messages to reply when receiving an unknown remote control
command (max 64 characters)

a_u8Alias Alias of phone number (max. 5 phone numbers)

a_u8PhoneNum Phone number, default MAX_SMS_PHONE_NUM is 5
a_u8RemoteAccess | Enable/Disable remote control of each phone number
a_u8AlertBitMap Bitmap of alert event for each phone number
a_u8AltMsgDelay Alert messages delay interval of each alert event.

68

SE59XX Industrial Device Server
Series

SMS Management (3G/4G Cellular

User Manual Only)

To access the SMS settings, please refer to Chapter 9:INI Configurations Read/Write (Settings
Management).

13.2 SMS Remote Control

This section describes how to set up SMS remote control operation. Using the following format
for Control Message, which will be sent via SMS. An example of control message is given below.
o Control Message Format

#<Password of SMS control>#<SMS control messages>

Example:
o Password of SMS control: “12345678"
SMS control message: “echo_test”
Users send remote control message:
#12345678#echo_test

To write a script containing response or event handler for the SMS control message, you can
modify the following file.
o SMS Event Handler
The script file used to handle the SMS event is
<sdk>/3rdparty/patch/smstools3-3.1.21/scripts/smsevent

A file that lists supported SMS remote control messages is stored in the following location.
o SMS Remote Control Command List:

<sdk>/3rdparty/patch/smstools3-3.1.21/smscmd.Ist

13.3 SMS Alert Messages

This section provides the steps on how to setup SMS alert messages. This will allow your
hardware platform to send SMS alert messages to any mobile phone. Note that you can check
Section 8.9: Alert Message Management in Chapter 8 to get the idea on how to acces SMS
settings through ATOP SDK APIs. Here are the procedures to enable the SMS alert messages:

1. Set SMS management mode to “free”.

confutil -c 10 -r 4 -k mode -v free

2. Set the alias for the phone 1 as “phone_1".

confutil -c 10 -r 4 -k alias00 -v phone 1

3. Set the phone number for phone 1.

69

SE59XX Industrial Device Server User Manual SMS Management (3G/4G Cellular
Series u Only)

confutil ¢ 10 + 4 k number00 v 0900123456

4. Set the Alert control to 63 (Bit 0 - 5).

confutil -c¢ 10 -r 4 -k devAlert00 -v 63

5. Check the configurations using the command in Figure 13.2:

confutil -d -f /jffs2/conf/smsconf.ini
Initialize cfg to file: /jffs2/conf/smsconf.ini
[sms] =UNDEF

rmode]=[disabled]

s tpassword]=[]

treply]=[0]

s imessage]=[Unknown Msqg.]
:alias00]=[phone 1]
s :number00]=[090012345¢6]
s:rmtaccess00]=[0]
s sdevalert00]=[63]

Figure 13.2 SMC Configuration

6. Change IP address from your WEB and check if you can receive the alert message as
shown in Figure 13.3:

c

Figure 13.3 SMS Alert Message

70

SE59XX Industrial Device Server

User Manual SMS Management (3G/4G Cellular

Series Only)

13.4

Testing of SMS Remote Control

To verify your SMS Remote Control operation, please follow steps for testing SMS remote control:

1.

5.

6.

Set SMS management mode to “free”

Enable SMS reply
confutil -c 10 -r 4 -k reply -v 1

Set remote control password

confutil -c 10 -r 4 -k password -v "12345678"

Check the configurations as shown in Figure 13.4:

confutil -d -f /jffs2/conf/smsconf.ini
Initialize cfg to file: /jffs2/conf/smsconf.ini
[sms] =UNDEF

s:mode]=[free]

ipassword]=[12345678]

sms :replyl=[1]
imessage]=[Unknown Msg.]
5:alias00]=[]
rnumber00]=[]
s :rmtaccess00]=[0]

Figure 13.4 SMS Remote Control Configuration

Send a message to the device (Suppose that the phone number is “0901123456").

Note: SMS remote control message format is: “#<password>#<command>"
sendsms 0901123456 “#12345678#echo_test”

Check remote control response.
The phone will receive a SMS messages: “SMS self test!” as shown in Figure 13.5.

#12345678#echo_test

« 8 SIM 1

SMS self test!

« 118 sIM 1

Figure 13.5 SMS Self Test

71

Firewall Support (Gateway Platform

SE59XX Industrial Device Server
User Manual Only)

Series

14 Firewall Support (Gateway Platform Only)

For ATOP's gateway platform, ATOP SDK provides the basic firewall rules with “iptables”. In ATOP
SDK, the firewall is activated when the NAT function is enabled. Users can reference the start-up
script file to implement proprietary firewall mechanism. You can configure the following script
files for firewall setting and activation.

e Script file to set the firewall
<sdk>/software/application/system/firewall.sh

¢ Firewall script activation
When the WAN interface is up, system will activate the firewall script file
<sdk>/software/application/system/if-up.sh

14.1 NAT

The NAT (Network Address Translation) settings are managed in the data structure called
NAT_CONFIG inside <sdk>/software/include/nat_conf.h file as shown Figure 14.1. Table 14.1
summarizes description of the fields inside this data structure.

re for NAT settings

tybedef struct _ nat_config__ {

uBNATEnable;
uBDHCPSvrEnable;
u8WanIf;
uBReserved;
a_uB8IPStart[4];
a_u8IPEnd[4];

Figure 14.1 Firewall NAT

Table 14.1 Description of Fields in NAT Setting

Field Description
uS8NATEnable NAT enable/disable
« 0:Disable
« 1:Enable

u8DHCPSvrEnable | When NAT is enabled, users can determine to enable/disable DHCP
server function on local LAN interface
DHCP server enable/disable

« 0:Disable

« 1:Enable

72

SE59XX Industrial Device Server Firewall Support (Gateway Platform

User Manual

Series Only)
Field Description
a_u8WanlF Index of WAN interface. The filed would be useful only when there are
two LAN interfaces supported on the platform
a_u8IPStart Start IP addresses that DHCP server to assign
a_u8IPEnd End IP addresses that DHCP server to assign

14.2 Firewall Scripts: Deny/Allow/Forward

ATOP SDK provides the simple mechanism to allow users to activate firewall on a gateway device.
Users can easily establish their own firewall on their gateway device by adding or creating their
rules within the following shell script files.

« /etc/iptables/iptables.deny
« /etc/iptables/iptables.allow
o /etc/iptables/port_forward

When firewall.sh script runs and the above script files exist, the related scripts will be activated.

73

SE59XX Industrial Device Server

Series User Manual Examples

15 Examples

This chapter provides an example of applications or scripts for ATOP SDK.

Example 1: Adding a new daemon in ATOP SDK:

ATOP SDK provides the example codes of com_tcp_server in software folder. The com_tcp_server
(“<sdk>/software/application/utils/com_tcp_server/”) is an example used to exchange data

between COM port(s) and TCP network. Users can reference the example codes (tcp_server.c and
Makefile) to gain an idea on how to create a daemon on the system of their device.

74

SE59XX Industrial Device Server

Series User Manual Warranty

16 Warranty

Limited Warranty Conditions

Products supplied by Atop Technologies Inc. are covered in this warranty for undesired performance or defects
resulting from shipping, or any other event deemed to be the result of Atop Technologies Inc. mishandling. The
warranty doesnot cover; however, equipment which has been damaged due to accident, misuse, abuse, such as:
Use of incorrect power supply, connectors, or maintenance procedures

Use of accessories not sanctioned by us

Improper or insufficient ventilation

Improper or unauthorized repair

Replacement with unauthorized parts

Failure to follow our operating Instructions

Fire, flood, “Act of God”, or any other contingencies beyond our control.

RMA and Shipping Reimbursement

o Customers must always obtain an authorized “RMA” number from us before shipping the goods to be repaired.

o When in normal use, a sold product shall be replaced with a new one within 3 months upon purchase. The
shipping cost from the customer to us will be reimbursed.

o After 3 months and still within the warranty period, it is up to us whether to replace the unit with a new one;
normally, as long as a product is under warranty, all parts and labour are free-of-charge to the customers.

o After the warranty period, the customer shall cover the cost for parts and labour.

o Three months after purchase, the shipping cost from the customer to us will not be reimbursed, but the shipping
costs from us to the customer will be paid by us.

Limited Liability

Atop Technologies Inc. shall not be held responsible for any consequential losses from using our products.

Warranty

Atop Technologies Inc. provides a 5-year maximum warranty for Industrial Serial Device Server products.

75

o

atop

Atop Technologies, Inc.

TAIWAN HEADQUARTER:

2F, No. 146, Sec. 1, Tung-Hsing Rd,
30261 Chupei City, Hsinchu County
Taiwan,R.0.C.

Tel: +886-3-550-8137

Fax: +886-3-550-8131

ATOP INDIA OFFICE:

Abhishek Srivastava
Head of India Sales

Atop Communication Solution(P) Ltd.

No. 311, 6" Main Rd, Indiranagar,
Bangalore, 560038, India

Tel: +91-80-4920-6363

E-mail: Abhishek.S@atop.in

ATOP EMEA OFFICE:

Prashant Mishra
Business Development (EMEA)

Atop Communication Solution(P) Ltd.

No. 311, 6" Main Rd, Indiranagar,
Bangalore, 560038, India

Tel: +91-738-702-0003

E-mail: prashant.m@atop.in

www.atoponline.com

www.atop.com.tw

ATOP CHINA BRANCH:

3F, 75", No. 1066 Building,
Qingzhou North Road,
Shanghai, China

Tel: +86-21-64956231

ATOP INDONESIA BRANCH:

Jopson Li

Branch Director

Wisma Lampung JI.

No. 40, Tomang Raya

Jakarta, Barat, 11430, Indonesia
Tel: +62-857-10595775

E-mail: jopsonli@atop.com.tw

ATOP AMERICAs OFFICE:

Venke Char

Sr. Vice President & Head of Business
11811 North Tatum Blvd, Suite 3031
Phoenix, AZ 85028,

United States

Tel: +1-602-953-7669

E-mail: venke@atop.in

76

http://www.atoponline.com/
http://www.atop.com.tw/
mailto:Abhishek.S@atop.in
mailto:jopsonli@atop.com.tw
mailto:Bhaskar.k@atop.in
mailto:venke@atop.in

